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Mathematical solution

The neglecting of second and higher order terms in
the expansion of |dr;] imposes a limitation on the al-
lowed shifts if the formulation of the problem is to
retain its physical meaning. This, of course, is the same
restriction as applies to the least-squares technique
where unfortunately it is not possible to allow for it.
Let . .
ory=0xii+dyij+ozik ,
where, because of the restriction on the shifts,

&1,120X12 — &1,
8{,223)/12 —&i,2
8{,32321 = —&3.

Define new variables,

Juy =0xi+€1,4

vy =0yi+éi,2

Ow; =024 +&i,3
so that

285,123141; >0

2¢;,,>0v; =0

265,32 0w; =0,

The problem is now one of optimization subject to
a set of linear constriction with all variables being
positive and was originally solved by Dantzig (1951).
It is not necessary to outline the method of solving
these inequalities to obtain a minimum in X w;4% , as
there can be few computers for which linear program-
ming programs do not exist, such is its importance in
the theory of economics.
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It is worth noting that there are numerous strategies
for the use of this technique. It is by no means neces-
sary to have one inequality for each structure factor
and they could be grouped together to give inequalities
for various regions of reciprocal space or for various
ranges of intensity, always, of course, treating sep-
arately those which had values w42 which differed
appreciably from experimental prediction,

Conclusion

It has been shown that the linear programming tech-
nique of minimizing the linearized function X w42 has
certain advantages to offer in deciding the accuracy of
a given structure model over that of the conventional
least-squares technique which does not use the maxi-
mum information derivable from the data. It is to be
expected that for a refined structure using high quality
data (zs(h) all small) the two techniques in the limit
would give the same minima. It is dubious if this
would be true if the 7;(h) values are large.
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A Comparison of Experimental X-ray Structure Amplitudes for Sodium Chloride
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Recent X-ray structure amplitude data for sodium chloride are divided into a consistent majority and
an inconsistent minority by statistical methods. A set of mean value estimates of the structure amplitudes

is derived from the consistent data.

X-ray structure amplitudes (at room temperature) for
sodium chloride have been measured many times in
recent years (Table 1). Considerable differences occur,
so that it is difficult to extract useful information about,
say, the electron distribution and thermal motion in
this alkali halide. The purpose of the present note is
to compare the different experimental results for re-
flexions with A24-k2+72<48 and to show that these
results may be grouped into a consistent majority and
an inconsistent minority.

The comparison has been restricted to this range of
low-order reflexions for several reasons. Firstly, the
range is common to most experiments. Secondly, the
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experimental measurements of these low-order reflex-
ions are not very sensitive to those differences in ex-
perimental techniques which lead to different rates of
fall-off, with angle, of the higher order reflexions.
Thirdly, accurately known structure amplitudes for this
range would provide a great deal of information about
the electron distribution. With this in mind, a set of
mean value estimates of the structure amplitudes has
been derived from the consistent data and is presented
in Table 3.

Brief details of the data to be compared are given
in Table 1; mosaic single-crystal data published before
1952 have been excluded since, as Renninger (1952)
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has shown, these are almost certainly erroneous and
likely to underestimate the magnitudes of weak relative
to strong reflexions. As Table 1 shows, the published
sets of data differ in scale. Some are absolute measure-
ments; others contain a scale factor which may differ
slightly from unity. Furthermore, different sets incor-
porate quite different corrections for anomalous dis-
persion. The data must therefore be adjusted as closely
as possible to a common scale and have consistent cor-
rections for anomalous dispersion made to them before
a proper comparison can be performed.

Corrections of the data of Table 1 for anomalous
dispersion were made in the following way. Firstly,
those corrections which were reported as having been
made in the published data were removed,* so that
all measurements were then appropriate to the radia-
tion (Cu Ko or Mo Ka) used in the experiments.

The corrections which should now be applied to the
experimental measurements, thus restored, were esti-
mated with the aid of a model lattice of Hartrce—-Fock
free ions at the observed lattice spacing. However, these
estimates prove to be quite insensitive to the particular
model used, as will be shown below. Af’, Af" were
taken from Cromer (1965) and the B values and scale
factor of the model were chosen to minimize the expres-

si
10n ’i {Fexp - Fmodel(k, B)}2 .

Mosaic single crystal

Mo Ko
Relative

AB4, ABS
Yes

Crystals 4,5

Abrahams & Bernstein (1965)

Mosaic single crystal

ABI, AB3
Cu Ka
Yes
Relative

—

f measurement of an automatic diffractometer, not in providing

Vihinen (1960)
Powders 4,B,C,D  Crystals 1,3
V-4,B,C,D
Powder
Cu Ka
Relative

Yes
des for strong, medium and weak reflexions.

Finally, the dispersion contributions to the experi-
mental data were taken to be the differences between
the structure amplitudes calculated from the above
model and from the corresponding dispersion-free
model.

Dispersion corrections obtained in this way for dif-
ferent sets of experimental data agreed with each other
to within about 0-02,F and their mean values for dif-
ferent reflexions are given in Table 2. Other models,

Schoknecht (1957)
Mosaic single crystal

SCH

Mo Ka
No
Absolute

(1955)
W& W
Powder plates

Mo Ka

Witte & Wolfel
Crystal plates
Absolute

No

Table 2. Average values of the anomalous dispersion
corrections applied to the data of Table 1

hkl Cu Ka Mo Ka hki Cu Ka Mo K«
111 0-23 011 333 0-20 0:09
200 0-44 0-18 511
220 0-42 0-17 440 0-34 0-14
311 0-23 010 531 0-18 0-08
222 0-41 0-17 442 0-32 014
400 0:39 0:16 600
331 0-21 0-09 620 031 0-13
420 0-38 015 533 0-17 0-08
422 0-36 0-15 622 0-29 013
444 0-28 0-12

Renninger (1952)
Mosaic single crystal
Mo Ko
No
Absolute

REN
Cu K«
Yes

Abrahams & Bernstein were primarily interested in determining the accuracy o

Witte & Wolfel used separate methods to determine structure amplitu
error-free structure amplitudes.

Wasastjerna alone recorded reflexion intensities on photographic film.

(1946)
WAS
Powder
Relative

Table 1. Some details of room-temperature measurements of X-ray structure amplitudes of sodium chloride
Cu Ko
No

Wasastjerna

* Renninger gave in his paper a reference to the corrections
which he used. Abrahams & Bernstein (private communication)
used the values of Af’, Af" listed in International Tables for
X-ray Crystallography (1962). The corrections which they
made can be deduced from these values and other information
provided in their papers. In the case of Vihinen (1960), un-
corrected structure amplitudes can be deduced directly from
his Table V.

1 The corrections are too small to be affected significantly
by small differences in the scales of the experimental data.

Corrected for anomalous

dispersion?

Scale
Special features

Authors
Abbreviation
Specimen type
X-radiation
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based on neutral atoms and distorted ions, lead to
results which agree with those of Table 2 to within 0-01
and it is clear that the use of a model is simply a con-
venient device for obtaining the dispersion corrections
appropriate to the experimental data. Having computed
these corrections, theoretical models do not enter further
into the comparison of the results obtained experimen-
tally.

The sets of dispersion-corrected structure ampli-
tudes, derived by the above procedure, still differ
slightly in scale. Scale factors k;, with k, arbitrarily
put equal to unity, have been introduced to bring them
into as close agreement as possible, in the following
sense. Define the mean and variance of the structure
amplitude for the jth reflexion to be

1
Fij= —2 kiFy 1)
n;
and

1
2= — X (k:iFy—F?, 2
gj m—1) 5 (kiFij— Fy) )
where n; is the number of sets of data for which meas-
urements Fy; exist. The k; were chosen to minimize the
quantity X o% and their values are recorded in Table 3,

J

along with other information discussed below. Use of
this simple criterion to determine the &; receives some
a posteriori justification in that the calculated k; are
very similar for the three sets of nominally absolute
measurements. They are also similar for the four sets
of Vihinen, who claimed to have adjusted them to a
common scale.

The dispersion-corrected and scale-adjusted sets of
data can be compared with the set of mean values F;
by means of a y2-test. The use of this test may be
roughly justified by the following arguments. Since
there is a minimum of seven measurements for any one
reflexion and since no set of data contains fewer than
nine members, effects of small sample size should not
be very important. Thus, the estimated quantities Fj
and o7 may reasonably de taken to be the true values
and, assuming normally distributed errors, the quantity
S; defined by the equation

Si= 2 {(kiFi;— Fy)]os}?
J

should be distributed like y2 with no more than p;
degrees of freedom, where p; is the number of reflex-
ions in data set i Values of pi, x2(5%) (the value
which S; should exceed with a probability of five per
cent) and the ratio r;=S;/x2(5%) are listed in Table 3.

Numbers in italic type in Table 3 relate to a com-
parison of all of the published data mentioned in
Table 1. We see there that r; exceeds unity [or, equi-
valently, S; exceeds x2(5%)] only for the data SCH,
WAS and AB3, and we conclude that these three sets
differ significantly from F. It will be noted that the
differences of the measurements SCH from F are fairly
systematic in that they are negative for the three
strongest reflexions and positive otherwise. The devia-

tions of WAS from F are also systematic and it is
interesting to note that these data can be brought into
surprisingly close agreement with F by a correction
which is quadratic in F, This suggests that Wasastjerna
might have used an incorrect conversion from photo-
graphic film blackening into values of reflexion inten-
sities.

The numbers in ordinary type in Table 3 refer to a
comparison which does not include SCH, WAS or
AB3. No set of data fails the new y2 test, though AB1
and AB4 come close to failure. Inspection of the Table
shows that the measurements of Abrahams & Bern-
stein for the reflexions of lowest order differ erratically
and by large amounts from F. The remaining sets and
Wasastjerna’s results, suitably modified as above, agree
quite well with one another. This suggests that the set
of mean values, F, may be a close approximation to
the true structure amplitudes of sodium chloride.

Although F is probably correct to 1-29, structure
amplitudes will require to be known to higher accuracy
to provide a reliable description of significant features
of the electron density in the crystal. The precision of
F could be improved to a limited extent by the inclu-
sion of further sets of data in an analysis of the above
type. Higher accuracy than that gained simply by sta-
tistical factors would require improved experimental
accuracy, and this necessitates assessment of the fac-
tors leading to differences between the sets of data.
The recent report of the American Crystallographic
Association’s single-crystal project (Abrahams, Alex-
ander, Furnas, Hamilton, Ladell, Okaya, Young &
Zalkin, 1967) is particularly relevant. Consideration of
the measurements of reduced intensities, and especially
the comparison of these for secondary crystals with
the primary standard crystal, lead to the conclusion
that internal perfection of these crystal specimens was
a major cause of variation in measured intensities, while
differences in experimental set-up caused other but
probably less significant deviations.

The author wishes to thank Dr A.McL.Mathieson
for suggesting this comparison and Drs J.K. McKenzie
and B.Dawson for helpful advice.
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